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A general numerical method of characteristics applicable to problems in magneto- 
fluid dynamics as well as ordinary fluid dynamics is described. The method can 
be applied to unsteady three-dimensional flows of chemically reacting, non- 
equilibrium, multi-component media. Dissipative phenomena must be neglected 
in order to make the governing equations of change hyperbolic, because the 
method can be applied only to quasi-linear, hyperbolic, partial differential 
equations. Practical restrictions on computation time usually require unsteady 
problems to be limited to cases with short transient times although theoretically 
the method applies to all unsteady flows. In steady flow the local velocity must 
be greater than the largest local wave speed. The characteristic and compatibility 
equations are derived for the most general case of magnetofluid dynamics. A new 
finite-difference network and its corresponding equations are developed similarly. 
Specialization of the general method to consider simpler problems is outlined. 
Preliminary numerical results of calculations using the method are presented. 
The practicality and feasibility of utilizing the general numerical method of 
characteristics on presently available, electronic digital computers is evaluated 
in the light of recent experience in calculating multi-dimensional flows with the 
method. 

1. Introduction 
This paper discusses a finite-difference technique applicable to the quasi- 

linear hyperbolic partial differential equations obtained from the equations 
of fluid dynamics by neglecting all terms which arise from dissipative processes. 
The numerical method of characteristics discussed here refers to a method which 
uses the properties of characteristic directions to simplify the partial differential 
equations before putting them in finite-difference form, The finite-difference 
calculation proceeds along characteristic surfaces so that domains of depen- 
dence are explicitly determined, and numerical stability and convergence 
criteria are more easily obtained and fulfilled. The numerical method of charac- 
teristics has been used extensively for flow problems involving two independent 
variables; see, for example, Meyer (1953) and Ferri (1954). The method applied 
to  three independent variables has been considered by Thornhill (1948), Coburn 
& Dolph (1949), Sauer (1950), Holt (1956), and Fowell (1961), but only recently 
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have actual numerical calculations been attempted by Butler (1960), Tsung 
(1960), and Moretti et ul. (1962). The method can be extended to problems in- 
volving four independent variables, three space co-ordinates and time, as was 
done by Bruhn & Haack (1958), Sauerwein (1964) and Strom (1965), but actual 
numerical calculations have not as yet been accomplished principally because 
of the limitations of existing computers. The next generation of computers should 
be capable of handling a t  least the simpler four-variable problems. 

This paper presents with a unified approach the method as applied to three- 
dimensional, unsteady, ordinary fluid dynamics. The method is then extended 
to magnetofluid dynamics. A new finite-difference scheme, developed from the 
results of recent numerical calculations, is presented. This scheme has several 
advantages in its application to the general method, which are detailed below. 

The method of characteristics uses the fundamental property of characteristic 
surfaces that, when the equations are written in characteristic form, derivatives 
in a direction normal to the characteristic surfaces do not appear in the equations. 
In  two-variable problems, a simplification is brought about by using characteristic 
directions because the partial differential equations are reduced to ordinary 
differential equations, which can be integrated along characteristic lines. In 
problems of more than two variables, however, this simplification does not 
result because the equations in characteristic form are still partial differential 
equations. The reduction in the number of partial derivatives which appear 
explicitly in the equations is still a simplification which can be successfully 
utilized. The equations can still be integrated in certain characteristic directions 
with the partial derivatives in the other directions evaluated numerically by 
finite-difference techniques. In  addition to reducing the number of partial 
derivatives, the method of characteristics determines the solution on charac- 
teristic surfaces which bound the domains of dependence and regions of influence 
of points. Explicit knowledge of the location of the surfaces can be used to under- 
stand the physical propagation of waves in the flow (because the characteristic 
surfaces are the envelopes of waves in the flow field), and can be used to simplify 
stability and convergence determination for the finite-difference procedure. 

The calculation of certain unsteady flows is restricted because of a practical 
limitation on the numerical calculation. This limitation does not apply to 
steady flow problems, but the equations must be hyperbolic for the method to 
apply there. This generally means that the steady flow must be ‘supersonic’ 
in some sense; i.e. the local flow velocity must be greater than the local wave 
speed of the fastest wave possible in the medium. The practical limitation on 
unsteady flow can be seen by referring to figure 1.  Consider a one-dimensional, 
unsteady situation which shows the basic limitation even for the multi-dimen- 
sional case. Consider a fluid particle at the origin at  t = 0 which moves in a steady 
flow with velocity u and is located at  P after a time At. The wave speed in the 
medium is c. Only points between A and B at t = 0 can influence P. Taking this 
as a basic, finite-difference network, with the flow to be determined at P from 
conditions at  A and B, it  can be seen that 

At = A x / ~ c .  (1.1) 
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If Ax = 1 ft. and the medium is air (c z 1000 ft./sec), t E 0.0005 see; thus it can be 
seen that only very short time steps can be made and, therefore, only problems 
involving very short transient times can be considered. Hypersonic flows 
usually have very short transient times so that the method can be applied to 
hypersonic unsteady flows. 

L A X  I 
FIGURE 1. Wave geometry. 

For multi-dimensional, unsteady problems where the wave speed might vary 
from place to place in the fieId and perhaps as a function of its direction of 
propagation, At can be estimated conservatively by 

At z Ax/2cmax. 
In  ordinary fluid dynamics 

or in magnetofluid dynamics 
Cmax = amax, 

Cmax = J(&ax + bhax), 

where a is the speed of sound and b is the Alfvkn wave speed. Hence, it can be 
seen that the limitation is just as restricting in multi-dimensional and magneto- 
fluid dynamic flows. 

2. The general equations for the method of characteristics 
The method of characteristics applies only to hyperbolic, partial differential 

equations. The equations of magnetofluid dynamics are hyperbolic only if 
dissipative phenomena are neglected. In  many flows of practical interest away 
from boundaries, where gradients might be large, dissipative effects can be 
neglected except for electrical resistance. Because of this, the application of 
the method must be arbitrarily limited to a medium with negligible electrical 
resistance. 

The equations without dissipations are 
for over-all continuity 

9 + V . ( p V )  = 0, 
at 

for species continuity 
DCi 

p-- = ri (i = 1, ..., N -  l), Dt 

(2.1 a )  

(2.1 b )  

2-2 
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for momentum conservation 

DV 1 
p- +Vp-- (V x B) x B = 0, 

Dt P 

for energy conservation 
Dh Dp 
Dt Dt ’ 

p--- = 0 

and Maxwell’s equations give 

V X ( V X B )  = 0, 
aB 
at 
-_  

(2 . lc )  

(2 . ld)  

(2.1 e) 

where 
~a ot = ,+v.v, 

with the thermodynamic relation 

h = h(p~P,C1,**.,CN-l) (2.l.f) 

required to complete the set. p, V ,  ci, T i ,  p ,  B, h and N are respectively the mass 
density, the velocity, the mass fraction of the ith species, the chemical source 
function of the ith species, the pressure, the magnetic induction, the specific 
enthalpy and the total number of chemical species. Ohm’s law has been taken in 
the standard form, that the current density divided by the electrical conductivity 
is equal to the electric field plus the vector cross-product of the velocity with the 
magnetic induction. The usual assumptions of negligible displacement current 
and net charge density have been made and the MKSQ system of units is em- 
ployed. 

The single algebraic equation (2 . l f )  can be used to eliminate the enthalpy 
from (2.1 d )  to give 

where the subscripts of the thermodynamic derivatives indicate the properties 
held constant in the differentiation and 

which is the speed of sound in a gas with the mass fractions of the species held 
constant, or in other words, the frozen speed of sound as pointed out by Chu 
(1957) and Broer (1958). Another useful form of the energy equation is obtained 
by introducing the entropy s into (2.2) to obtain 
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where we have used 

Equations (2.1), (2 .2 ) ,  and (2.3) are the non-dissipative form of the magneto- 
fluid dynamic equations to which the numerical method of characteristics can 
be applied. 

Ordinary Jluid dynamics 

Consider a general case of three-dimensional unsteady flow of a compressible, 
reacting, multi-component, non-conducting fluid. In  Cartesian co-ordinates 
the equations of change are 

DU l a p  -+-- = 0 
D t  pax ' 
DV l a p  -+-- = 0, 
Dt P?Y 
DW l a p  -+-- = 0, 
D t  paz 

( 2 . 6 ~ )  

(2.6b) 

( 2 . 6 ~ )  

(2.6d) 

Dci 1 
__ - - -Ti (i = 1 ,  ..., N - 1 ) )  
Dt P 

where u, v, w are the x-, y-, z-components of the velocity vector and 

~ a a a  a Dt _ -  - jj+u-+v-+w- 
ax ay ax 

Equation (2.4) will be used occasionally instead of (2.6e) and the thermodynamic 
entropy function, 

must be known. 

minant.? The result is 

s = s@, P7 c1, * - - , CN-1) ( 2 - W  

The characteristic equation is obtained by evaluating an ( N  + 4)-order deter- 

( 2 . 7 ~ ~ )  
(=) DPl N+2 [&)2--a2((%)2+ ($)'+ ($)2)] = 0, 

where = const. is a characteristic hypersurface.1 From this equation it 
can be seen that there are two sets of real characteristic hypersurfaces given by 

and 

DP1 __ = 0, 
Dt 

(+)2-a2((%)2+ (%)'+ (%)2] = 0. 

(2.7 b )  

( 2 . 7 ~ )  

t General characteristic theory is presented by Courant & Hilbcxt (1962). Those proper- 
ties and equations of the general theory used in this analysis are summarized in appendix A 
of Sauerwein (1964). 

$ The hypersurface in this case is a three-dimensional manifold in a four-dimensional 
space. 
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Equation (2.7 b )  indicates that the particle line is characteristic, and therefore all 
hypersurfaces made up of particle lines are characteristic. Note that the particle 
line is an ( N +  2)-fold characteristic because the corresponding term in ( 2 . 7 a )  is 
raised to the N + 2 power. This means that N + 2 compatibility equations are 
available along the particle line. The second characteristic hypersurface given by 
( 2 . 7 ~ )  is a quadratic hypersurface which is a generalization of the Mach conoid 

FIGURE 2. Characteristic cone in ordinary fluid dynamics. 

that appears in two-dimensional unsteady flow. The general hypersurface can 
be termed the Mach hyperconoid. The two-dimensional unsteady version of the 
characteristic hypersurface is shown in figure 2 for the case of a steady, uniform, 
velocity field. Only the aft-cone in the negative time direction is shown. The 
cone shown in the figure can be taken as a local approximation t o  the Mach conoid. 
In  a similar manner, a Mach hypercone can be used as a local approximation to 
the general Mach hyperconoid and is in the numerical method of characteristics. 

For a set of quasi-linear first-order equations of the form 

a set of linear coefficients hj can be found from 

such that at least one compatibility equation for the characteristic surface 
PI = const. can be written in the following form 

This equation has the useful property that derivatives in a direction normal to 
the characteristic surface do not appear. 
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The compatibility equation for the Mach hyperconoid is obtained by deter- 
mining the hi, which have the following form in this case : 

(2.8a) 

(2.8b) 

(2.8d) W l  (A, + A,) __ = 0, Dt 

(2.8e) 

Equations (2.8a) to (2.8d) and (2 .8 f )  can be solved sequentially to give 

(2 .9a)  

(2.9b) 

( 2 . 9 ~ )  

h,/hl = -1 ,  (2 .9d)  

(2.9e) 

ax Dt 

A,+i/hl = I(") /E) ] (i = 1, ..., N-1). 
aci P,p,cj+i  P . C j  

Note that the substitution of these results into (2.8e) gives (2 .7c ) ,  which again 
shows that the correct solution for the homogeneous equations in has been 
obtained. These values of hi give the compatibility equation which is sought: 
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The compatibility equations for the characteristic hypersurfaces made up 
of particle lines can be determined by inspection to be (2.6 e )  and (2.6f) because 
they contain substantial derivatives only. Using (2.4) instead of (2.6e) they are 

where J ,  is the quantity in curly brackets in (2.4) and 

dc, 1 
- -ri (i = 1 ,..., N-1). 

V 2 - P  

(2.11a) 

(2.11b) 

The two additional compatibility equations for the particle lines which complete 
the set of (N + 2 )  equations are the two components of the vector momentum 
equations projected on the characteristic hypersurface as was shown by von 
Mises (1958). There are only two components because the vector momentum 
equation lies completely within the three-space (2, y ,  2). These last two com- 
patibility equations are not needed for the numerical method of characteristics 
and are not written here. 

Magnetojiuid dynamics 

The most general case considers the three-dimensional, unsteady flow of a com- 
pressible, reacting, multi-component, perfectly conducting fluid where the 
equations of change have the following form in Cartesian co-ordinates: 

aB, a a 
at a2 ax 
\-- (vB, - wB,) + - (uB, - vB,) = 0, 

aB, a a 
at ax aY 

(wB, - uB,) + - (vB, - w B ~ )  = 0, 

(2.12a) 

(2.12 b) 

(2.12 c) 

(2.12 a) 

(2.12 e )  

(2.12f) 

(2.12g) 

(2.12h) 

(2.12 i) 

Again it will be useful to use (2.4) instead of (2.12e) a t  certain steps below. 
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The characteristic equation in this case contains an ( N  + 7)-order determinant. 
The expansion of the determinant requires a large amount of algebraic manipula- 
tion, but finally gives the following result : 

apl opl A*' 

_ _ _  ( ( ys)2-(b.VP,)2) (yg)'-cj) [ y$)'--c:) = 0, (2.13) at Dt 

where b is the vector Alfvkn wave speed 

b = B/d(PP), 
b2 = (B:+B:+B:)/pp, 

(2 .14~)  

(2.14b) 

and c, and c, are respectively the fast and slow magneto-acoustic wave speeds : 

c; = 4 I Vp, I [ I  Vp, 1 (b2 + a2) + { (Vp1)2 ( b2 + a2)2 - 4a2(b. Vp,)2)$], 
c: = 41 Vpl I [(VP, I /(bz + a2) - {(Vpl)2 (b2 + a2)2 - 4a2(b. V/31)2}*]. 

(2.15 a )  

(2.15 b)  

Equations(2.12) allowasolutionwhereV. Bisnotzero. WhenV. B = Oisimposed 
on the set, the @Jat = 0 root is lost (see Grad 1960). The following characteristic 
hypersurfaces are obtained in the magnetofluid dynamic case : 

(2.16 a )  

(3.16 b) 

(2.16~) 

(2.16d) 

Equation (2.16~)  indicates that the particle line is again characteristic, and it 
can be seen from (2.13) that it is an (N)-fold characteristic. From the similarity 
of (2.16 b) to (3.16 d )  with (2.7 c )  it can be seen that these hypersurfaces correspond 
to three possible waves. These waves are anisotropic, however, having a wave 
speed which varies with the direction of propagation. They have been studied 
and their properties examined by Friedrichs & Kranzer (1958). These properties 
will merely be stated here in order to develop the numerical method. A more 
complete discussion is given by Jeffrey & Taniuti (1964). 

Equation (2.16 b) corresponds to a transverse wave, termed the Alfvh wave. 
The other two waves from (2.16~) and (2.16d) are fast andslowmagneto-acoustic 
waves. These are waves which are partially longitudinal and partially transverse. 
The wave speed for these three waves can be plotted on a polar plot called a 
Friedrichs diagram. Such diagrams for the three cases a2/b2 > 1, < 1, = 1 
are presented in figure 3. The distance from the centre of the plot to a particular 
point on a curve is the speed of propagation of a wave whose normal vector points 
in the direction considered. Note that these diagrams are drawn relative to the 
magnetic induction B, which is taken to be horizontal in the figures. These dia- 
grams have rotational symmetry about B. The inner curve gives the slow 
magneto-acoustic wave speed, the middle curve gives the transverse wave speed, 
and the outer curve the fast magneto-acoustic wave speed. 



26 Harry Sauerwein 

a2/b2= 1 a2/b2 = 2 

FIGURE 3. Friedrichs diagrams. 

v'(a2 + b2) 

Fast wave 

Transverse wave - 

B 
a -  

a2jb2 = 1 a2/bz = 2 

FIUURE 4. Characteristic loci. 
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The characteristic loci can be obtained from the Friedrichs diagrams by graphi- 
cal construction or they can be determined analytically. They are shown in 
figure 4. These loci are the shape of a disturbance that propagates from a point 
disturbance at  the origin in a still medium. It is a picture of the self-similar pulse 
at a, finite time after leaving a point disturbance. Note that the entire disturbed 
region is within the fast-wave front, but the slow wave is felt throughout the entire 

P 

Particl e line 7 Transverse wave 

I 

Fast wave Slow wave 

(b)  
FIGURE 5 .  Characteristic cones in magnetofluid dynamics. (a) Combined and 

(b)  separated for clarity. 

disturbed region. The two ' cusped triangles ' do not bound a region which con- 
tains the entire slow-wave disturbance. Sears (1960) has suggested these might 
be called ' crests, ' i.e. discontinuities in the disturbance pattern. The transverse- 
wave loci become two points indicated by the small circles in figure 4. The charac- 
teristic loci also have rotational symmetry about B. 

Some idea of the geometry of these characteristic hypersurfaces can be ob- 
tained k y considering the special case of two-dimensional, unsteady flow with 
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a steady uniform velocity field as was depicted in figure 2 for ordinary fluid 
dynamics. Figure 5 shows the characteristic surfaces for this case where B has 
been taken parallel to the x-axis. Of the four characteristic surfaces, only the fast 
and slow waves give true surfaces. The transverse wave surface degenerates into 
two lines and the particle line, of course, one line. As in the ordinary fluid dynamic 
case, the characteristic cones (or hypercones in (x, y, x ,  t ) )  will be taken in the 
numerical method as local approximations to the conoids (or hyperconoids). 

The compatibility equations are obtained as before, by first solving for the 
A,. First note that the fast- and slow-wave terms in (2.13) really arise from a 
single fourth-order expression : 

+(V/3i)2a2(b.V/31)Z) = 0. (2.17) 

They are both waves which result from an interaction of acoustic and Alfven 
waves, as can be seen by the interchange of the roles of a and b in the Fried- 
richs diagrams when a2/b2 is > 1 or < 1. From these properties it can be seen that 
a single compatibility equation will result for the two waves. The & for the 
magneto-acoustic waves are given by the following equations : 

(2.18d) 

(2.18e) 

-&W--A~U- a/31 8/31 = 0, ( 2 . 1 8 ~ )  
aY aY 
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Divide (2.18) by A,, and solve (2.lSd) and (2.18i) to obtain 

A,/h,= - 1, (2.19a) 

and h,+n/h - (E) /e) (n = 1, ..., N -  1). (2.19b) 
- acn p , p , c j + n  P, Cj 

Then the remaining hi are obtained from the following set of equations obtained 
from ( 2 . 1 8 ~ ~ )  to ( 2 . 1 8 ~ )  and (2.18f) to (2.18h): 

!A 
Dt 

0 

0 

a/31 

a/31 

Bv z 
B z a z  

0 

04 
Dt 

0 

8/31 
B,  - 

3Y 

ax 

3/31 
B Z  - 

aY 

3/31 B,az 

a/31 B,az 
8/31 

- PPV aa 
. (2.19c) 

The algebraic solution of ( 2 . 1 9 ~ )  involves an excessive amount of algebraic 
manipulation. An attempt to invert the matrix in (2.19 c) by partitioning, in 
order to take advantage of its symmetry properties, still involves excessive 
algebraic labour. This indicates that the explicit algebraic solution of ( 2 . 1 9 ~ )  
is very complicated and, therefore, the compatibility equations are also com- 
plicated. The ultimate purpose here in obtaining the compatibility equations is 
to apply them to a numerical method, so i t  is no drawback to solve ( 2 . 1 9 ~ )  
numerically in order to obtain the compatibility equation with numerical 
coefficients. The numerical inversion of an 8 x 8 matrix is a routine procedure 
for the computer; therefore, in principle, the compatibility equation for the 
magneto-acoustic waves is determined by the hi from ( 2 . 1 9 ~ ) .  

Note that equation (2.18e) was not used in determining the hi. With the sub- 
stitution of the solution of ( 2 . 1 9 ~ )  into (2.18e), it  can be reduced to (2.17). This 
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is true due to the fact that a solution to the homogeneous set (3.18) is known to 
exist because of the characteristic equation. The characteristic equation is just 
the condition required so that a solution to (3.18) exists. If this same procedure 
were used to obtain the compatibility equation for the transverse Alfv6n wave, 
(2.18e) could not be reduced to (3.16b) because the former contains the speed of 
sound a, which cannot be eliminated by substitution of the hi from ( 2 . 1 9 ~ )  
because ( 2 . 1 9 ~ )  does not contain a. Therefore, for the transverse-wave compati- 
bility equation, A, should be set equal to zero, and then, from (2.18d) and (2.18i) 
A, and A,,, are zero. The remaining hi are determined from a set of five equations 
similar to ( 2 . 1 9 ~ )  where the last equationis omitted, thelast column of the square 
matrix replaces the right-hand side of the equation, and the denominator in 
the At ratios is A, rather than A,. It also appears that this equation must be solved 
numerically for the same reasons given above for ( 2 . 1 9 ~ ) .  

The compatibility equations for the particle line (2.11 a) and (2.11 b) are the 
same as those for the particle line in the ordinary-fluid-dynamic case. Note 
from (2.13) that there are only N compatibility equations for the particle line in 
magnetofluid dynamics in contrast to the N + 3 equations for the non-conducting 
case. The two components of the momentum equation are no longer compati- 
bility equations. 

This completes the set of equations required for the numerical method of 
characteristics. The actual numerical techniques and procedures for iterative 
solution are discussed in the next section. 

3. The elements of the numerical-calculation procedure 
The numerical method of characteristics is used to solve Cauchy problems 

for a set of quasi-linear, hyperbolic, partial differential equations. Data are given 
on an initial non-characteristic hypersurface, together with boundary conditions 
on the flow field, such as solid body surfaces and shock waves. The solution is 
then obtained on an adjacent hypersurface by numerical solution of the equations 
written in characteristic form, i.e. the compatibility equations, with the partial 
derivatives replaced by their finite-difference approximations. The solution on 
this new hypersurface is then taken as the initial data, and the process repeated 
to obtain the solution on the next adjacent hypersurface. In  this way, the solution 
is obtained by matching in space or time until the desired solution is obtained or 
until the complete region of influence specified by the initial data has been 
determined. 

Only the procedures for calculating the flow at a new point in the flow field 
away from boundaries are presented here. To determine the flow a t  a point on 
the boundary, these procedures must be modified slightly in order to satisfy the 
boundary conditions a t  the point. These modifications are straightforward 
after the basic procedure is defined, and the reader is referred to Butler (1960), 
Powell (1961) and Sauerwein (1964) for the details. 

One-dimensional unsteady $ow 

Starting with a simple case to reveal the basic procedure before attempting the 
more general flows, consider a one-dimensional, unsteady flow of a single-com- 
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ponent non-conducting fluid. The usual finite difference network for the method 
of characteristics is shown in figure 6 (a ) .  Given the flow properties at points 1 and 
2 ,  the new point, numbered 3,  is located a t  the intersection of characteristic 
lines from 1 and 2. The compatibility equation (see von Mises 1958) written in 
finite-difference form for the two characteristic lines, becomes 

The denominators, of course, could be eliminated, but they are retained here 
because, in the more general case to follow, they do not cancel. Simultaneous 
solution of (3.1) yields u3 andp3. From point 3, the particle line is then projected 

‘ t  

C 

I- 

L 
At 

FIGURE 6. One-dimensional networks. 0, Determined points; v, initial-data points. 

rearward, using the u3 just determined, to locate the point 4 on the initial line 
(t = 0 in figure 6 (a)) .  From the compatibility equation for the particle line, it is 
seen that the entropy is constant along the particle line so that 

s3 = s4. (3.2) 
s4 must be determined by interpolation among the initial-data points on t = 0. 
This completes the determination of the flow properties at a new point 3. The 
complete flow field can be built up by repeated application of this basic procedure. 

The network proposed here is a slightly modified version of the standard 
approach. This network was first proposed by Hartree (1953) and is depicted in 
figure 6 (a). The network is constructed by locating the new point 2 a specified 
constant ‘distance’ At out along the particle line through the initial point 1. 
At can be obtained from 

where a,,, is an average speed of sound along the initial-data line and Ax is the 
initial-data-point spacing. Next, the characteristic lines through 2 are projected 

At = Ax/2a,,, (3.3) 
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rearward to locate their intersections with the initial-data line at  3 and 4. These 
points are located a distance a At on either side of 1. The flow properties a t  3 and 
4 must be obtained by interpolation. Then the compatibility equations of the 
form (3.1) determine u2 and p2 in terms of the properties at  3 and 4. s2 is equal 
to s1 so that the flow at the new point is determined. 

Both of the above procedures can be iterated to second order in the step size 
by using a modified Euler method. This merely involves repeating the solution 
of the compatibility equations (3.1) using average values for the coefficient. 
Thus, for example, in the first network, an equation of the form 

(3.4) 

would be iterated in place of (3.1 a). The superscript (n) indicates the value of a 
quantity at  the nth-iteration step. This sort of iteration is usually used in most 
practical calculations. 

Hartree's network is proposed here because it would be difficult if not im- 
possible to determine analytically the intersection point corresponding to 3 
in figure 6 (a) in the case of multi-dimensional, magnetofluid-dynamic flows. 
On the other hand it is rather simple to determine the intersections with the 
initial hyperplane of the approximated characteristic hypersurfaces emanating 
from a point. These intersections are shown in figure 4. Hartree's network has 
the disadvantage that more interpolation is required, which can introduce more 
numerical inaccuracies, but it has a secondary advantage for multi-component 
media in that no interpolation is required on the particle line, and, therefore, 
more accuracy can be maintained in the usually difficult integration of the rate 
equation along the particle line. It also has the advantage that the solution is 
obtained on t = const. lines (or hyperplanes in the general case). 

Ordinary jluid dynanzics 

In generalizing from one-dimensional, unsteady, to three-dimensional, unsteady 
flow, two fundamental differences occur. One difference is the fact that charac- 
teristic hypersurfaces arise in the three-dimensional flow while only characteristic 
lines appear in the one-dimensional case. This introduces a ' degree of freedom ' 
in the choice of the network to be used in the multi-dimensional case. This 
freedom of choice of the net has led to the investigation of various networks and, 
indeed, Fowell (1961) discussed five different networks proposed by various 
authors. The main point about the introduction of freedom of choice of the net- 
work is that some restrictions must be placed on this freedom in order to ensure 
numerical stability. This point is discussed in detail below. 

The second difference is that the compatibility equations are partial differen- 
tial equations in the multi-dimensional problem rather than ordinary differential 
equations as in the one-dimensional case. Hence, derivatives in the p3 and p4 
directions must be evaluated numerically before the compatibility equations 
(2.10) can be integrated in the p2 direction. These derivatives can be evaluated 
with any one of a number of numerical procedures. A scheme due to Fowell 
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(1961) is outlined here. For example, consider the u-component of velocity 
whose partial derivatives can be obtained from the following equations: 

au au ax au ay au az au at 

a p ,  axaa, ayapm az a p ,  at a p ,  
__ - - -~ +--+- -+-- (m = 3,4) .  (3.5a) 

The ax/a/lm, ay/apm, . .. are obtained from the co-ordinate transformation, and 
the other partial derivatives from 

au au 
a Z  at 

+- (~ , -~~)+-( t5- t J  (i = 1, ..., 4), ( 3 . 5 b )  

where the i subscript refers to an initial-data point on the initial hypersurface, 
and the 5 to the new point being determined. At the first step in the iteration, 
u5 can be approximated as 

(3 .54  us"' = &(u1+ u2 + u3 + uq), 

and, in subsequent steps, a value from the previous iteration is used. The pro- 
cedure is analogous for the other independent variables. 

The co-ordinate transformation 

PI 

P 2  

P 3  

P 4  

(3.6) 

has only two conditions to fulfil. One is that the characteristic equation must be 
satisfied, and the other that the P2-axis must lie along the line from an initial- 
value point to the new point being determined. It has been found advan- 
tageous to use an orthogonal transformation (see Sauerwein 1964) so that, when 
the two conditions given above are applied together with the orthogonality 
relations, all but two terms in the transformation matrix can be determined. 
These two terms can be chosen arbitrarily and correspond to two degrees of 
freedom left in orienting the orthogonal axes. 

The complete numerical procedure can best be seen by referring to figure 7 
for two-dimensional unsteady flow. The new point 2 is located out along the 
particle line from 1 at a 'distance' At. The characteristic surface from 2 is pro- 
jected back to obtain its intersection with the initial surface t = 0, which is a 
circle of radius a,At centred on 1. Three points, numbered 3, 4 and 5, equally 
spaced on the circle are chosen as the determined initial-data points. Their flow 
properties are determined by interpolation in the initial-data surface. The com- 
patibility equations (2.18) in finite-difference form for the three lines 3-2, 4-2, 
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and 5-2 can be solved for us, v3, and p ,  (note that w, x ,  and p4 are dropped in this 
two-dimensional case). The finite-difference form is obtained by introducing for 
the line 3-2 

(3.7) 
8U 
- = ( u 2 - u 3 ) / 4 { ( x 2 - x 3 ) 2 +  (YZ-Y3)'+ ( t 2 - t 3 ) 2 } ,  
8/32 

together with similar equations for the v and p derivatives. 
The compatibility equations for the particle line (2.11) are used in a similar 

manner to determine s2 and ci,. A note of warning should be inserted here to 
indicate that the numerical integration of the reaction-rate equations, i.e. 
species continuity equations, can be difficult, especially near equilibrium 
conditions. Sedney & Gerber (1963) have also noted that utilizing entropy in 
non-equilibrium calculations can lead to large computational errors so that it 
might be advisable in some cases to use another thermodynamic variable, such 
as temperature, instead of the more customary quantity, entropy. In  many 
problems of interest the ci vary much faster along the particle line than the 
other dependent variables vary along the characteristic surface so that a finer 
integration step size and a more accurate numerical integration scheme are 
required along the particle line (see Strom 1965). Another difficulty arises due 
to the singular nature of the solution as equilibrium conditions are approached 
in the integration along the particle line. However, new numerical techniques 
have been developed to overcome this problem ; for example, see the work of 
Treanor (1966) or Morretti (1965). 

The above procedure can be iterated to second order in the step size just as in 
the one-dimensional procedure described above. 

A necessary condition for numerical stability is that the domain of dependence 
of the finite-difference scheme must contain the domain of dependence of the 
partial differential equations as first pointed out by Courant, Friedrichs & Lewy 
(1928). The applicability of this condition to the method of characteristics, as 
opposed to the standard finite-difference approaches (i.e. using rectangular 
nets), was pointed out by Sauerwein & Sussman (1964). As Heie & Leigh (1965) 
have indicated the stronger von Neumann condition can also be applied by 
linearizing the equations and performing a finite-difference calculation. However, 
both conditions rest ultimately on a heuristic approach due to the lack of an 
exact test for stability of non-linear partial differential equations. The von 
Neumann condition requires the development and checking of a computer 
program just to test stability heuristically, while the Courant-Friedrichs-Lewy 
condition is simply applied to the geometry of the finite-difference network. 
It would appear that it might be simpler to apply the CFL condition and pro- 
gram the complete calculation, which could be checked heuristically for stability 
with a known flow field rather than to program a complicated finite-difference 
procedure only to check for stability. 

The CFL condition is applied to the finite-difference network next. In  figure 7 
this means that the square formed by the outer fixed data points used in the 
interpolation to determine the flow properties a t  3, 4 and 5 must contain the 
circle through 3, 4 and 5. In  general, this means that the figure obtained by 
connecting with straight lines the outermost, fixed initial-data points used in the 
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interpolation must contain the figure which is the intersection of the character- 
istic hypersurface with the initial hypersurface. 

The three-dimensional, unsteady case can now be considered. As in the two- 
dimensional case, the new point is located at a perpendicular distance At from 
the initial hyperplane out along a particle line through a fixed initial point. 
The rearward, i.e. in the negative time direction, characteristic hypersurface 

2 

FIGURE 7. Finite-difference network in ordinary fluid dynamics. 7,  Fixed initial-data 
points in t = 0; 0, determined initial points in t = 0; 0 ,  new point. 

FIGURE 8. Finite-difference network in the initial hyperplane for ordinary fluid dynamics. 

is projected back to obtain its intersection with the initial hypersurface. This 
intersection is approximated as a sphere of radius a,At centred on the fixed 
initial-data point as shown in figure 8. The compatibility equation (2.10) in 
finite-difference form must be written for four lines from the initial hyperplane 
to the new point in order to determine the four unknown quantities u2, v2, w2, 
and pz. The four determined initial points, numbered 3 to 6 in figure 8, should be 
evenly spaced on the sphere and this can be done by locating them a t  the corners 
of a regular tetrahedron inscribed within the sphere. s2 and ciz are determined 
as described above for the two-dimensional case, and the iteration scheme is 
exactly the same. Hence, all the flow properties at a new point in the flow field 
can be determined. 

3-2 
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MagnetoJluid dynamics 

The magnetofluid-dynamics case can be handled in exactly the same manner as 
the ordinary-fluid-dynamics finite-difference network. The only difference is 
in the location of the determined initial points on the intersection of the charac- 
teristic hypersurface with the initial hypersurface. 

It is simpler to first consider a two-dimensional, unsteady case. The proposed 
locations of the determined initial-data points are shown in figure 9. Point 1 
is the fixed initial-data point at  the base of the particle line that determines 
the location of the new field point. Points 2 and 3 are at the base of the transverse 
wave lines, while 4 to 9 are on the slow-wave ‘ crest ’; 10 to 13 are on the fast-wave 
front. The 13 points would seem to be the minimum number necessary in order 
to account for all disturbances in the domain of dependence while still retaining 
the symmetries of the figure. The points on the slow-wave intersection have 
been located on the cusps (points 4 to 9) because these might be the points which 
carry the dominant part of the slow-wave disturbance. Cumberbatch (1962) has 
found that this is the case for the points 5 and 7 in steady flow. 

(a2+ b2) 

B 

FIGURE 9. Location of determined initial-data points for two-dimensional 
magnetofluid dynamics. 

With s and ci determined by the compatibility equations along the particle 
line, twelve other compatibility equations are left to determine the five unknowns 
u, v,p,  B,, and B,. These equations can either be solved in a least squares sense, or 
seven of the fifty partial derivatives in the p3 direction can be taken as additional 
unknowns rather than evaluating them numerically. The former would seem 
to be the better procedure in that the arbitrary choice of the specific seven 
derivatives to be considered unknown would probably affect the accuracy of the 
results in some not easily predictable manner. 

Finally, the determined initial points for the three-dimensional unsteady 
case can be located as shown in figure 10. The z-axis has been aligned with the 
local B and the two intersection surfaces have been separated for clarity. Both 
surfaces have rotational symmetry about B. The minimum number of points 
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appears to be 16. Of course more could be used, but this would just introduce 
more equations to be solved without increasing the number of unknowns. 
For the network of figure 10 there are fifteen equations in seven unknowns, 
u, II, w , p ,  B,, B,, and B,, neglecting the particle line through 1 which determines 
s and ci independently. The solution can be obtained in the same manner as 
suggested above for the two-dimensional case. 

X 

FIGURE 10. Location of determined initial-data points for three-dimensional 
magnetofluid dynamics. (a) The fast-wave surface, and (b)  the slow-wave surface. 

4. Preliminary numerical results 
It is not the purpose of this paper to present the results of a tested and developed 

numerical procedure. The purpose is to present the theory underlying the new 
procedure and the details of the numerical network together with its inherent 
advantages, which it is believed vastly outweigh its disadvantages. However, 
it is in order to indicate the degree of confidence one might place in the method 
as to obtaining successful results efficiently. With this in mind a sample of pre- 
liminary numerical results being obtained with the method is given in this 
section. 
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First, it should be noted that the programming of the numerical procedure 
is not a simple task. Approximately four man-years were required to write 
the program for the calculation of two-dimensional, unsteady ordinary fluid 
dynamics of a perfect gas. The program uses linear interpolation throughout. This 
was done in order to obtain a working program as soon as possible so that the 
stability and feasibilities of the procedure could be evaluated in the shortest 
period of time. 

A network similar to that shown in figure 6 (a )  was used because the advantages 
of the network in figure 6 (b )  are more favourable for reacting and magnetofluid 
effects. However, in the process of adding higher-order interpolation to the pro- 
grams, which is being done at  the present time, the network is being switched 
from the (a )  type to the ( b )  type. Thus, future additions of chemical reactions 
or other improvements will be simpler. 

In  order to develop and test the procedure, the flow between a detached shock 
wave and the surface of a two-dimensional body in unsteady motion has been 
calculated. The motion of the body is arbitrary as long as no additional shock 
waves (other than the bow shock) are introduced into the flow. Initial, steady- 
state data for the flow of a perfect gas (specific heat ratio equal to 7/5) at  a 
Mach number of 5 over a circular cylinder were obtained from the work of Belo- 
tserkovskii (1958). The body surface was warped or oscillated in time to disturb 
the steady-flow field. 

Some of the results of one such calculation appear in figure 11 .? The circular 
cross-section of the cylinder was warped to an ellipse whose semi-major axis 
was 7 yo greater than the radius of the cylinder. The semi-major axis of the ellipse 
grew in time using one-half period of a cosine function displaced by one-half 
its amplitude. The semi-major axis was located at  a positive angle of attack of 
20'. The equations for the motion of the body surface are 

4{x2 cos2 a - xy sin 2a + y2 sin2 a} 
B(x,  y, t )  = _______ 

{ ( A  - 1) cos [n (1 + t / t O ) ]  + A  + 1}2 
+x2sin2a+xysin2a+y2cos2a-1 = 0 for 0 < t < to, (4.la) 

- 1  = 0 for t > to, (4.1b) 
sin2 a 

where for figure 11 a = 30 O, A = 1.07, to = 8 x 10-5sec. The body motion has 
stopped by time step 14. Figure 11 shows the velocity-vector field plotted for 
the time steps indicated. This plot was generated directly by the computer. 
The computer can also be used to generate contour plots of any of the thermo- 
dynamic variables or the Mach number. 

Each of these time-step results lies on an almost planar time surface. Linear 
interpolation was used on the Sth, 16th, 24th and 32nd time steps to give the 
results on constant-time planes. When the implementation of network ( b )  of 

t Results for intervening stages of the calculation are being held in the editorial files 
and may be obtained from the editor if required. 
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figure 6 has been completed, this additional interpolation will not be necessary. 
It can be noted in figure 11 that the net does not maintain a regular spacing 
and decreases slightly in size even though the calculation is initially carried well 
into the supersonic region. These effects will also be eliminated with network ( b ) .  

In  the plots of figure 11 the compression wave can be seen developing on the 
moving body surface and propagating asymmetrically into the flow field. Figure 
11 follows the wave to the point where it interacts with the bow shock wave. 
Beyond this point the wave is difficult to follow in the velocity-vector field 
because the two-dimensional spreading effect reduces its amplitude. It can be 
seen in pressure plots, however. The calculation has been carried some 60 time 
steps, but due to the repeated use of linear interpolation the accuracy decreases 
to the point that the later time steps are only qualitatively useful. The addition 
of higher-order interpolation, under way at  the present time, should considerably 
increase the number of time steps that can be accurately calculated. 

The calculation was performed on an IBM 7094 I1 computer. The calculation 
and plot generating required approximately 90min of computer time for the 
60 time steps. The plot generating was done after the calculation as both the 
calculation and plotting programs could not be held in the 32,000-word computer 
memory at  the same time. Details of the problems encountered in programming 
and extensive numerical results will be published later. 

5. Conclusions 
First, it should be evident from the development in this paper that the numeri- 

cal method of characteristics can be applied to simpler specialized problems as 
well as the most general three-dimensional unsteady flow of a perfectly con- 
ducting, inviscid, reacting, multi-component fluid. The method can also be 
applied to steady flows where the local velocity is everywhere greater than the 
largest local wave speed or, in other words, when the partial differential equations 
are hyperbolic. Some care must be taken, however, in determining the charac- 
teristic surfaces for magnetohid-dynamic steady flow (see Grad 1960, and 
Cumberbatch 1962). 

The preliminary numerical results indicate that the multi-dimensional method 
of characteristics presented here can be used to obtain useful results with a 
reasonable effort. These preliminary results have indicated certain improvements 
to the method which can increase its utility and efficiency. These improvements 
have been incorporated in the new finite-difference network presented here and 
would seem to aid the extension of the method to four-independent-variable 
problems with chemical reactions and magnetofluid-dynamic effects. 

One limiting aspect of the numerical method of characteristics is the large 
amount of initial data required to start the solution. Many theories are available 
to give certain specific details of flow fields, but the complete details of entire 
flow fields are seldom determined and hardly ever published. For this reason, 
the application of the method might be somewhat limited, but there is the in- 
triguing possibility of specializing the general method in certain cases so that 
it could determine its own initial data. For example, the initial conditions for a 
three-dimensional unsteady flow in ordinary fluid dynamics might be obtained 
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by using a specialized form of the general method to solve a three-dimensional 
steady supersonic flow. 

The solution of unsteady, two-dimensional flow for ordinary fluid dynamics 
is feasible and practical a t  the present time utilizing presently available high- 
speed, electronic digital computers as shown by the work of Butler (1960), 
Sauerwein (1964) and the new results presented here. The solution of three- 
dimensional, steady flows in ordinary fluid dynamics has been accomplished by 
Tsung (1960), Morretti et al. (1962) and Strom (1965). Calculating the more 
difficult problems involving multi-component, non-equilibrium thermodynamics 
in three-dimensional, unsteady flows with magnetic effects is marginal with 
existing computers. These calculations should become completely feasible, 
at  least for the simpler cases, with the next generation of computers, which 
will appear shortly. 

It appears that there are vast possibilities for the utilization of high-speed, 
electronic digital computers, and the numerical method of characteristics in 
solving complicated non-linear fluid-dynamics problems. This is especially true 
when very general boundary conditions and complicated physical processes 
must be considered. 
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